\qquad
sis

3

(6)

$$
40653 / \mathrm{A}
$$

NII. 2 17
(a)-4 -2 \& \& crawhest to abs l
 E.r (:2) an+4 5 7

THE 47858

DISCOURSE

 Made before the
Royal Society

The 26 ．of November 1674° Concerning the tife of

© Duplicate $1920 p o z t i o n$

 In fundry Important Particulars： Together with aNew Hypothefos of springing or Elaftique Motions．

> B Y

SirWILLIAMPETTX，Kt． Fellow of the faid sociery．

A．ntere，invirfurt，ic ？रumb：ro Deus amnia fecit： iveniurzm to［ozlus Numberes，Numero oninia だして。

$$
\mathrm{L} O \mathrm{~N} D O \mathrm{~N}:
$$

Printed for Fobn Maityn，Printer to the Royal Society，at the Bell in St．Pauls Churchyard， 1674°

Dedicatoter

Troubles have or can quench my affections to Philofophy, as no diftances of Time or Place have made Me lefs than formerly,

Your Graces

> Mof humble, moft faithful, and moft obedient Servant,
ult. Decemb. 1674.

> William Petty.
(a)

To

To the Right Honourable

WILLIAM

Lord Vifcount Brouncker, PRESIDENT OF THE
Royal Society.
My Lord,

HE Obfervations on the Bills of Mortality were diftinctly Dedicated to a Peer of this Realm, and alfo to the Pre $[1-$ deat of the Royal Society,
(a 2) and

The Empiric

and both with good acceptance: Wherefore I have a! (like the Author of thole (Observations) Dedicated this Difcourle to bis Grace the Duke of Newcaftle, for the reafons in the foregoing Upiflee mentioned; and I now again Dedicate the fame to your LordJbip. Firft, In Fratitude for the several aftfrances I bad from your LordShip towards the Experiments mentioned in this Difcourfe. Secondly, Becaule your Lord pip is an Eminent Fudge. in

Dedicatory.

in thole Matters, a Perfon whole Animadversions I foul take for Findneffes; and who is able to excuse the Erross, and defend the Truths I have delivered. Laftly, For that near half the insole Difcourfe relates to Shipping, Artillery, Fortrefles, Seabanks, \&c. which all concen bis Majefties Service, and part whereof are happily entrufted by bim to your Lordfbips Care; I thought I might express My affection to tore bis Majefties Con(a 3) cernments

The Epiftle, dor.

cernments even by offering, this my Mite unto theron Upon the whole Matter, I have layd bold on this Occafin, to Publifb my define of being efteemed,

> My Lord,

Your Lordhips mot humble and faithful Servant

William Petty.

ER-

ERRATA.

DAge 6.1.5. r. Proportion. p.44.1. I. r. be for being. p. 49. 1.6. r. Evc. be. p. 49.1. 13. r. moreover for viz. ibid.l.I4. r. Mice, or rather fome fimal Animals (wobofe correfpondent payts are but $\frac{1}{\mathrm{~T}}$ in length of the Horfes.) ibid. 1. ult. r. $\frac{1}{1} \frac{2}{4}$ for $1_{1} \frac{1}{4}$ p.87. 1.10. r. Numerus for numerohs. ib. 1. II. r. of for or. p. 88.1.8. r. wherreof for thereef.

Thurfday Decem. Io. 1674.
At a Meeting of the Councill of the Royal Society.

THereas it was defired by the Royal Society, that a Difcourse made before them by sir William Petty Knight, at their Meeting the 26. of Novemben laft, might be Printed: It is this day Ordered by the Council of the faid Society, That the faid Difcourfe be Printed by the Printer of the Royal Society.

Brouncker, P.R.S.

To his Grace, WILLIAM, Lord Duke of

 ǒEWC ASTIEMay it pleafe your Grace,

Am commanded by the Rojal Society to Print the Difcourfe, which I made A 3 be-

Tily Cpitle

sefore them, upon the laft Meeting•day of their lant year, and next before that of their Anniverfary Election: Becaufe, as Drapers cut Patterns of their whole Cloth out of an End, notbecaufe the End is better than the reft, but becaufe it may be beft fpared; fo (Ifuppofe)

SDCDicatory.

the Society are content, that this Exercife pafs for a Sample, pro tanto, of what they are doing; for that the fame may be conceived to confift of three parts, viz, I he firgt being an Endeavour to explain the Intricate Notions, of Pbilofopbia Prima of Place, Time, MotiA 4 $0 n^{6}$

The Cpitte

on, Elafticity, Grc. in a way which the meaneft Member of adult Mankind is capable of underftanding: The fecond being, to excite the World to the fudy of a little Mathematicks, by fhewing the ufe of Duplicate Proportions in fome of the moft weighty of Humane

EDeDicatoze.

mane affairs, which Notion a Child of iz years old may learn in an hour: And the laft being, without Chymerical Speculations, to confider fuch points and properties, even in Atoms (fuch, whereof perhaps a Million do not make up one vifible Corpufculum.) as may

$$
\text { A } 5 \text { give }
$$

ILle Cpitele

give an intelligible Account of the Nexures, Mixtures, and Mobilities of all the parts of the Univerfe.

In like manner, 'tis the Profenfion of the Society, to make Myferious things plain; to explode and difufe all infignificant and puzling words; to

Scoicatoze.

to improve and apply litele fmall threds o Mathematicks to vaf ufes; and yet not to neglect the fine? Confideration, even of Atoms, where the fame is neceffary. The which purpofes of theirs, I venture to fay, do as much differ (both as to difficulty and dignity) from

from what is contmonly called Wit (and which takes with far the greater part of Mankind,) as the skill of Drawing and Painting a Cloud or Periwig doth from that of Defigning or Painting many complicated Figures of Men and Beafts in rome one Table,
where-

\$Dodicatoze.

 wherein each is per fectly to exprefs fome particular paffion, and all ftanding together to contain the true and entire Spirit of the Story reprefented: For, in the latter, precife exactnefs is indifpenfible, whereas in the former, not onely liberty always, but even extravagan-
Tlie Epifle

ky fometimes is not onely tolerable, but daudable. Andwhen I have faid this; I withal fay, that there is one Glory of the Sun, another of the Mcon, and another of the Stars, which may all confint together, without deAtroying or maligning each other. And all

Didicatore.

all thefe feveral Glories flhine fteddily in your Graces Firmament.

Being, I fay, appointed to publifis this Exercife, I have prefumed to dedicate it to your Grace. Firft, becaufe the S_{0} ciety have been pleafed to order it to be publifhed; (I dare not

Iby Epifle

not fay, as approving it, but as committing lit to Examination. Secondly, becaufe your Grace doth not onely love the fearch of Truth, but did encourage Me 30 years ago as to Enquiries of this kind. For about that time, in Paris, Merfennus, Gaffendy, Mr. Hobs, Monfieur

Des

DCDicatozy.

Des Cartes, Monfieur Roberval, Monfieur Mydorge, and other famous men, all frequenting, and careffed by, your Grace and your memorable Brother, Sir Charles Cavendifl, did countenance and influence my Studies, as well by their Converfation as their Publick Le-

The Cuitte

Lectures and Wriitings: Much of which ihonouts and helps I ow unto your Grace and have a frefl reimembrance of them. Thirdly, becaufe my Lord Ogle being now about to carve a fignificant Figure upon my Lord his Son, by his careful Education of him, I thought it a fervice

Dtoicatoty.

Wervice to his Lord-

 Whip, as well as an Expreffion of my hanks for his for18 mer acceptance of $m y$ mindeavours, to call mpupon him, not onely to inftruct my Lord his Son in fome Mathematicsk, but alfo to fore and Itock him with variety of Matrer, Data and Pbenomena,
The Epittle

 mena, whereupon ic exercife the fame fince Lines \& D Vum bers, without thofe: are but like LuteAtrings without Lute or a Hand. For my Lord, there is a Political Aritbmetic and a Geometrical ff u fice to be yet further cultivated in the World; the Errors and
Endicatoer.

and Defects whereof, neither Wit, Rhetoric, nor Intereft can nore than palliate, never cure. For, Fality, Difproportion, nd Inconfintence cannot be rectified by ay fermocinations hough made all of gurate and meafured eriods, pronounced
1 Tune and Ca

dence,

The Cpitte

dence, through th moft advantageo organs: much lefs b Grandifonous or Et phonical Nonfence farded with formal ty; no more than v cious Wines can remedied with Bran dy and Honey, or in Cookery with enol mous proportions Spice and

DCDicatosy.

Ram Res nolunt

 male adminiflrari. Thefe are the ReaCons, why I have put your Graces Name to this Treatife; though here is a contrary - ealon, why it Chould lave wholly fburid your Gracesfight and znowledg : which is, That might your Grace not perceive how
Tue Eppitic

 how little progrefs have made in thirt years time uponthof Studies. However hope your Grace wi take what I have dom for an Argument c my patience and per feverance in thef pleafant, though pro fitlefs, Employments and fee, that no hete rogeneous Cares an Trouble$$
[1]
$$

A

DISCOURSE TO THE
 Royal Society.

mean Orafmuch as this Society has been cenfured (though mith without much caufe) for profpending too much time in matters not directly tending to profit and palpable Advantages (as the Weighing of Air and the like)
B

$$
[2]
$$

I have therefore, to freigh ten this crooked fick, bem it and my prefent Dif. courfe the quite contrarss way, viz. to the Sails anc Shapes of Sbips; to Carpentr. and Carriages; to Mills Mill-dams, Bulwarks; tce the Labour of Horfes, anc to feveral other particulars: The which are nor only grofs enough of themfelves, but are alfo as grof. ly handled in this Exercife, to prevent the further imputation of needlefs Nici-

$$
[3]
$$

ty, and to leave room for your own further thoughts upon the fame.

And forafmuch as We have been alfo complained of for producing nothing New, I have together with my Inftances and Applications, above and hereafter mentioned, prefented you as an Appendix, to what is faid of Springs and other Elaftique bodies, with a new Theory (as I think) of Elafticity it felf, and that mechanically explicated in B 2
or-

$$
[4]
$$

order to make a breach on this hard Rock in Philofo. phys, and to chip off a little of that Block which ha: long lain thwart Us, in the way of Our Enquiries. Up. on the whole matter I have followed the Example of Elderly Divines, who finding their Flocks not tc mend their lives by perplexed Difcourfes about Predeftination, Tranfubftantiation, \&c. betake themfelves at lat to preach Faith and Good Wooks, Neigh

[5]

Neigbbourly Love and Cbarity, or Doing as we woula be done unto, and the like. For I have in this Exercife declined all Speculations not tending to practice, and ventured at few new Hypothefes, but that of Elafticity; rather calling upon you to review your own former Obfervations, and to apply your Matbematicks to Matter, fo as both may be improved to the profitable purpofes hereafter mentioned.

B 3 Where-

[6]

Wherefore the Title anc Scope of this Exercife is; Several Inftances, wherein the conjideration of Duplicate or Subduplicate propoortion, on woberein the con) ideration o). Sides and their Squares is 0_{j} ufe in bumane affairs. And the Infances which I have pircht upon for this day are thefe following, viz.

1. In the Drawing on

 Driving powers, which force Ships or other bodies through the water, with reference to the refpectiveVelo-

[7]

Velocities caufed thereby.

2. In the flapes or fharpne/s of bodies, cutting or dividing the water, through which they are diven or drawn, and in the different Velocities arifing from thence, where the Bodies and Forces are equal.
3. In the Strength of Timbers or other homogeneous materials applied to Buildings, to Carts, or any other Machinaments intended for ftrength : And how by a Model to judg B 4 the
[8]
the fufficiency of fuch E_{n} : gine as is reprefented by $1 t$.
4. In the effect of Oar: upon equal and like Ver. fels, according to theit Numbers, Length, Blades: and Motions with or againft the fiream of fmootb or wn-

even waters.

5. In the Motion or Travelling of Hor fes, on their feveral Paces, and with different Burthens on them.
6. In the Strength and Velocity of Mills and their Wheels.
7. In

[9]

7. In the Effects of Gunpowder.
8. In the Diftance at which Sounds may be heard.
9. In the Diftances at which Odoriferous matters may be finelt.
10. In the Diftance at which the Objects of Sight may be feen.
iI. In the time of the Returns made by vibrating Pendules.
11. In the Lives of mers and their Duration.

B 5 ?
13. In Mufical \& Sound? ing Bodies, fuch as String: and Bells.
14. In the Effects anca Motions of Fire, and burn. ing Spirits.
15. In the Rifing anc Falling of Bodies, but efpe: cially of Water in Pumpss Overfbot Mills, Leaks in Sbips, the Heights of River: at their head above thein fall into the Sea.
16. In Bellows,
17. In the Prices of fe weral Comnodities, as Mafts: Diamonds:

[14]

Diamonds, large Timber; Amber, Loadftones, boc.
18. In Mill-dams, Seabanks, and in the Bulwarks or Walls of Fortreffes.
19. In the Compreflion of Wooll, and other Elajtick Bodies, and of the Air within diving Veffels, as alfo in the Effects of Skrew-preffes upon feveral Materials. Having thus enumera ted my feveral Inftances, wherein Duplicate, and Subduplicate proportion is of great importance; I migh

I 2

now fall down-right upon the Application of thole: proportions to each of the: reflective matters above: mentioned. But because: Cuftome hath made it almolt neceffary to make a Preface to every Difcourfe, my Preface to this one Leefure thall be foch, as may Serve me for many more; that is, an Explication of what I my felf (at leal) un derftand by Matter, Body, Figure, Place, Motion, Quantcity, Quality, Habit, Time,

Propr

$$
[13]
$$

Proportion, Weight, Swiftnefs, Force, and Elafticity; which I fhall do without impofing or fuarce recommending the fame to any other. For I would be glad, when any man fpeaks to me in matters of importance, by words which he ufes often, that he would firft give me a Dictionary of fuch words, to contein what he himfelf meaneth by each of them. Wherefore:I Thall, as a Preface, prefix this Dictionary, wherein I dare

[14]

1 dare not define Matter by Enis, or Subftance, becaufe 11 think molt men conceive
${ }^{1}$ Matter better than they dec either of thefe two words: Ens, or Subftance. Nor de
${ }^{1}$ I define the words, Tbink Confider, or Conceive, by the words, Soul, Spirit, ACt, or the like, for the fame rea. fon. But prefuming you all underftand, conceive imagine, or fancy the word: Matter and Thougbt, a: well as any other I cat ufe, I venture to fay a: follow.

$$
[15]
$$

 follow
That 1. Place is the Image or Faney of Matter, or Matter confidered.
2. Quantity, the Fancy of Place.
3. Ratio, feveral Quantities confidered together.
4. Praportion, feveral like Rationes.
5. Situation, feveral Places confidered together.
6. Figure is Quantity and Situation confidered together.

> Z. Bods
7. Body is Matter ano Figare confidered toge: ther.
8. Motion is change o Place.
9. Time, the Image o Motion.
10. Quality, feveral Mo tions confidered together.:
11. Habit, the fame Motions repeated.
12. Likenefs, feveral Figures, or Qualities, and Proportions confidered together.
13. Smiftnefs, Time andl Place $_{2}$

$$
[17]
$$

lace or Space confidered

 ogether.14. Force is Body and Swiftness confidered togeher.
15. Right is the Image of Poffeffion, and is to it as Place to Body.
16. Elafticity I thall peak of hereafter.

In the next place, I uppole all the First Matter of the World to be Atoms; that is, Matter Immutable in Magnitude and Figure. 1 fuppofe Corpufcles to be as.

$$
[18]
$$

as many Atoms joyned toi gether, as make up a vifibi or renfible Object, and thi: all Functure of Atomes made by their Innate mot: ons. Moreover I fuppofi That every Atom is like the Earths Globe or Mag net, wherein are three Point confiderable, viz. two is the furface, called Poles and one within the fub. ftance, called Center, or ra ther Byas, becaufe in A. toms we confider neither Magnitude nor Gravity There

[19

whefe Atoms alfo may have ach of them fuch Motions s Copernicus attributes to he Earth,or more. Laftly, fotion to or from a Point nakes a freight Line, and, bout ir, a Circle. But frome he Center to Ieveral Points n the Circle, is Angle. We urther fay, that the motions of Corpufcles are comounded of the abovemencioned motions of Atoms; and the motions of bigger and Tangible Bodies (viz. their qualities) are decompounded

$$
[20]
$$

pounded out of the Mon ons, Situation, Figure, ar Magnitude of Corpufclesi and that out of, and b the premiffes all Pbonomi na in nature mut be fo ved. And this is all th Preface I Shall trouble yo with, being (as was laid the Dictionary wherein t find what I mean by ever: material word I intend t use in this enfuing Exert cire, which we thus begin v立。

$[21]$

Cbe firf futtance,

berein Duplicate, and Subduplicate Ratio or Proportion is confiderable, Is

N the Velocities of two equal and like Sbips; hich Velocities, I fay, are 1e. Square Roots of the owers which either drive r draw them ; as, for exmple, Such two Ships aving fails near double

$$
[22]
$$

to each other, or as 49 25 , the Velocity will be 5, the fquare Root of : unto 7, the like Root 49. Again, if the fails near triple, or as 49 16, there the Velocity tha be as 7 (the Root of 4 to 4 (the Root of 16.) as a quadruple Sail is r quifite to double fwiftnef and noncuple to treble; thi is, The fails muft be in du plicate proportion to th fwiftnels of the Ship; o this, in fubduplicate ti that. Again

$$
[23]
$$

Again, let there betwo hips of Equal fails, but of mlike or unequal tharpefs, fuppofe the head of ne extremely obtufe or wite flat, and the head of ne other to be an Ifofceles riangle added thereunto; fay, the fwifnels of thefe odies fhall be as the Roots f. the Perpendicular of nat Triangle to the Root fhalf the Bafe, or half ureadth of the fame. Seondly, Or if the fame Triagular head be cyphered away

$$
[24]
$$

away into an Angle froo bottom to top; then, the Root of the fame Pc pendicular is to the Ros of the Depth or Thic: nefs, fo are the Velocitie Thirdly, If the faid hea be cyphered both way together, then the Pru portion of Velocities fha be as half of one of tl above mentioned Propo tions added to the oth whole Proportion: Ex.g Suppofe the Perpendic lar of the triangle-hea

[25]

be 36 , the half breadth 9 , and the whole depth be 4; then the one Proportion hall be as 6 , the Root of 36 , to 3, the Root of 9 : The ralf of which Proportion is as 6 to 6 ; and the other Proportion is as 6 , the Root of 36 , to 2 , the Root of 4 . Now add the Proportions of 6 to 6 , to that pf 6 to 2 , the fum will be, as 36 to 12 , or as 3 to 1 . Fifthly, Suppofe two Paalellepipedons of unequal heads or refiftances, Ex.gr.

$$
[26]
$$

as 8 to 5 , or 64 to 40 : An+1 fuppofe the Sail on the bign ger, to that on the leffen to be as 9 to 4 , or 72 to 32 then the Velocity of th bigger thall be to the Velo) city of the leffer, as thi Root of 45 is to the Roo of 32. For if the Refiftan ces be as 64 to 40 ; them if the fail of the bigger ti that of the lefs were pro portionable to the Refi ftances, the fail of the ief fhould be 45, whereas wr Suppofe it but 32. Where

$$
[27]
$$

Wore the Velocity thall be s the Root of 45 , which is Imoft 7 , to the Root of ;2, which is about $5_{\frac{1}{2}}^{2}$, that s, as about 14 to in. Memorandum, That weting of Sails (by leffening he interfperft apertures etween the threds of the datail-cloth) doth make the ail, as it were, bigger; hich biggernels may be nown and meafured by he increare of the Ships elocity upon fuch weting. For, if the Ship thould

$$
\mathrm{C}_{2} \text { move }
$$

$$
[28]
$$

move one tenth part quich er after wetting than be fore, we may conclude th Sails are fwollen to thly equivalent of about $\frac{1}{5} \mathrm{pa}$ bigger ; for 100 (who) Root is 10) exceeds 8 It whole Root is 9 , by aboll $\frac{5}{5}$ of 100 .

By theere ways the diffe rent Velocities, arifin from the different Trim the fame Ship, may be al fo computed, the beft Trin being that which make: leaft refiftance, cateris pa ribus.

$$
[29]
$$

Now, having faid thus wmuch of the Effects of utsharpnefs and Sails, (the principal caufes of Velocity in fhipping, and unto which all others may be referred;) I thall add, That the want of thefe two Advantages are the chief caufe, why fhort, bluff, undermafted Veffels fail chea. per than others.

For fuppofe two Ships Titof equal burthens, but of tunlike dimenfions, the main Beam of the one beC 3 ing

$$
[30]
$$

ing farfe $\frac{1}{3}$ of the Kee length, and in the other, full $\frac{\text { xth }}{5}$; I fay firft, that th Hull of the latter fhall cot ${ }_{3}^{\frac{x}{3}}$ part more than that of thu former, and the advantag; as to failing fhall be fcarc ${ }_{\frac{7}{6}}^{3}$ part. Again, fuppofe, thi Tharper could carry $\frac{x}{2}$ a much fail more as the bluf: fer, whereof the advantag, in failing would be $\frac{1}{6}$ par more, in all $\frac{5}{3}$. Now, where the Sails are as 2 to 3 the Mafts and Yards muff be as 4 to 9 in fubftance

$$
[3 \mathrm{r}]
$$

land in value much more : And where the Mafts and Yards are as 4 to 9 in weight and bulk, the Cordage and Rigging muft be anfwerable : And where the Mafts, Yards, Sails,and Rigging are great, the Wind-taught of the Ship will correfpond, and will require proportionable Ca bles; and the weight of the Anchor muft follow the fize of the Cable, and the number of hands mult be proportionable to all the C. 4 pre-

$$
[32]
$$

premiffes : So as the on Ship will coft at leaff double as much as the o ther, and will fail at double charge of Wages and Vi. etuals, Ware and Tare, \&c Now if no trading Ship be (one time with another), above ${ }_{x}^{x}$ of her whole reign under fail, or 6 days in 60, fuppofe the tharper and larger-fail'd Ship fail in 4 dayes what the other petforms in 6 ; the difference will be but 2 dayes in 60 , or $\frac{x}{30}$ part of the Wa . ges,

[33]

ges and Victuals, and 0^{-} ther charges; whereas the charges is fuppofed to be more than double. I fay, this confideration is of great weight in Veffels of burden, efpecially fuch as carry grofs and cheap bulky Commodities, neither liable to damage or perifhing : Of which goods 7 parts of 10 of all Seacarriage do confitt. But on the other hand, where fafety againft Enemies, fpeedy difpatch upon im.
C 5: portant
[34]
portant occafions, or pre: occupation of a Market ari in the cafe, there fharpnef and great Sails may be adl mitted to the greateft pros portions practicable. Having thus digreffed I mind you that we faid Velocities are the Roots a Pefiftances and Extent Sails, \&c. It may be wel askt, How we know th fame, fince that very fev Seamen or Shipwrights, ei ther in their writing or dil courfes feem to anderftans

[35]

or own this important Po fition. To which I anfwer, that I have by many Ob fervations, Calculations and Comparifons, found the fame to be preter propter true,alchough there be many circumftances which intermingle themfelves in this Experiment, fo as to difturb and confound it: As namely, The ill placing of Mafts, The ill cutting and ftanding of Sails, The ill Trim of the Veffel, with the Cleannefs or Foulnefs

$$
[36]
$$

of the fame; The Sails more or lefs worn or wet $\ddot{\ddot{ }}$ as alfo taught or flack Rigging, \&c. Wherefore not onely to avoid thefe laft mentioned Intricacies, but alfo to make thefe Pofitions Examinable by every one that defires it ; I fay, that the different Velocity of Bodies (of feveral Tharpneffes, and as drawn or driven by different Powers of knocks or falling weights, have been by my felf and others much experimented

[37]

n large Canales, or Troughs of water, fitted with a convenient Apparatus for hat purpofe, and by no nan more, nor more judicioufly, than by the Right Honorable the Lord Brouncker, Prefident of this Society. For I do not think it hard to conceive, that Weights and Sails are powers of like Effect, and reducible to the fame Principle; fo as if a Body have moved in double velocity, when drawn. by a quadruple weight ;

[38]

ε weight ; and in triple, whee by a noncuple weight;
a doubt not but the fam
e will hold in Sails, or othet
ampellent Powers of th r fame proportions.
: And for the further clear
I ing or eafier trying hereot
t I offer two fmall Machina t ments heretofore made in 1 this Society : The one, to meafure the Velocity of th Wind, and the other it: Power or Equivalency to] Weight ; whereby it did and will appear, when the wind

[39]

wind is of double velocity, it will ftir a quadruple weight; and the like in other cafes according to the proportions of Roots and Squares above mentioned. The fame may alfo be feen even in any good TurnfpitJack, where a quadruple weight makes double Velocity (at the fame diftances of Time from the beginning of the Motion) both in the time of the Weights defcent, as alfo in the Revolutions of the Fly, and each in-

$$
[40]
$$

termediate Wheel. Nov perhaps the reafon of thet Phænomena may be her expected; to which I am fwer, that the many parallet Inftances above and here after mentioned, do, lik concurrent witneffes, prov the premiffes, at leaft as tis any practical ufe. And a for giving other reafon (which I take to be Ex plaining this Subject from the very firft Principles o Atomical Matter, and Moti on) I leave it to difcourfe

[4I]

ys too long for this Exerfe.

Cbe Secono Inffance

in the Strength of Timber, ふc.

Et there beSquare Rods or Pieces made of any Clean Timber, or other Mabrials, whofe Ends let fupported with conveient Blocks or Fulcra: Thefe Rods in Experience vill bear weight hung in the

$$
[42]
$$

the middle of them, x cording to the proporti. of their lengths or diftance between the Fulcra; that: to fay, a Rod A. being double length to the Rec B. will bear $\frac{x}{2}$ the weig, which B can bear; and b ing of triple length, it wi bear one third; ©o fic cateris. Again, let two thofe equal and alil fquare Rods be placed on upon the other (fo as to touch and fit,) then the $t w$ together fhall bear 4 time

$$
[43]
$$

m, 45 much as one alone, and ree of them, placed as a-re-faid, fhall bear nine mes as much, and fo on 1 proportion of Roots to quares. Again, lay the ame two Rods fide by fide, 0 each other, then they hall bear but double, three hall bear triple, and fo wprward, in Aritbmetical roportion. From whence c follows, that four of them laced fquare, fhall bear ight times as much as one lone. But if the fame four Rods

[44]

Rods taken as One, bei of double length making Otuple quantity to OI they thall bear but fos times the weight of O alone. So as two like p ces of Timber, that are cubical or triplicate pn portion of their Sides, al ftrong but according duplicate proportion, the Squares of their refp ctive Sides; and conf quently, to have like Veffe (differing in Content the Cubes of their lil Side

$$
[45]
$$

rides) equally ftrong, the imber of which they conIt muft be Qisadrato-quaratic; that is to fay, a hip of 400 Tuns, equally rong with one of 5°, nuft have not only 8 times 5 much Timber in it, but 6 times; which is feldom r never done. Which deet is the true Reafon, why reat Shipping is both Jearer and Weaker than mall Shipping, (no Ship n the world being fo trong as a Nut Thel ;) I fay, Weaker,

$$
[46]
$$

Weaker, for what is he faid; and Dearer, for wh fhall be faid hereafter the fixteenth Inftance Mafts,Diamonds,\&c. An on the other hand, if till Timbers were Quadrat quadratic, then the Sh of 400 Tuns would loaden with her own Mi terials ; if the Ship of 5 Tuns were not over-tim bered.

Now, for not well un derftanding thefe matter: many men defigning En gine

$$
[47]
$$

itnes of ftrength, do make odels of fuch Màchinaents by a Scale (fuppofe zerein an inch reprefents oot,) by which the Mo1 is the $\frac{1}{\text { I728 }}$ part of the Enne intended : And thereon they conceive, that if e Model be ftrong eugh to bear $\frac{\mathrm{r}}{\mathrm{i} 728}$ part of lat the great Machinaent is intended to bear, at then the faid great Mainament will be ftrong ough. Whereas indeed = Model muft bear the full

$$
\left[4^{8}\right]
$$

full $\frac{1}{144}$ of what is intenc for the great Machiname: otherwife great mifchii will appear in the Wo Wherefore the Square the Linear Difference 1 tween the Model and II gin , is the meafure and w of trying the ftrength a fufficiency fought for: T ignorance whereof hi made many a poor Pre Ctor. Upon thefe Prin ples, a Cask which will hic a Tun, ought to have times as much Timber

$$
[49]
$$

, as the Cask which holds hely a Barrel, or $\frac{1}{8}$ of a un ; provided one be as rong as the ocher (which not ufually feen.) For the igger Veffels, Carts, \&xc. ey are ufually the weaker, ompar'd with the ftrength dif the leffer; which appears lo in Animals, whofe rength is as the Square oots of their weights and ibfance, viz. if $\mathbf{1 7 2 8}$. lice were equiponderate one Horfe, the faid Horfe but $\frac{1}{14+}$ part as ftrong as

> D

$$
[50]
$$

all the faid Mice. From thefe confiderat ons the Scantlings of $T_{i i}$ ber in Buildings muft adjufted ; as for examp Let the Walls of any Roc be infinitely, that is, ful ciently frong; let t length and the breadth the Room be given : Ne: fuppofe the Room is to made fo ftrong, as that ew ry foot and a half fqua thall bear a Man, and that $3: \frac{x}{2}$ fquare feet fhou bear a Tun weight, (re konis

[51]

woning 14 men to the stun:) Laftly, let the diarength of the Timber be fogiven. Now the Quefions are, to find the rhacantlings of the Girders, ife, \&c. firlt in fquare ieces, and afterwards by tering the Squares into ore advantageous oblong izes; as for example, et the Room be fuppofed 6 foor long and 20 broad, iz. 520 foot in the Area, nd able to receive about 50 men, and to bear a-
D_{2} bout

$$
\left[5^{2}\right]
$$

bout 16 Tuns. Suppe the Timber be fuch, whereof a Rod of an im fquare, and 20 foot lon will bear ${ }_{20}^{\frac{1}{20}}$ part of an hu dred weight; or, that fuch Rods, or a Board 20 inches broad, and : foot long within the wall an whole hundred weigh and fo the whole Floor co fifting of about 16 fuc Boards, but 1600 . Now the fame Board were plano of 4 inches thick, it woul bear 16 times 1600 or 25

[53]

indred weight: If 5 inch:, 400 hundred weight: ut the whole weight degned being but 325 hunred, fome fize berween 4 ad 5 inches thick will iffice in this cafe, where efuppofe the Floor to be planck without Gife or irder. Next, fuppofe inead of this Planck there e ufed Gife of double hicknefs to the faid lanck, and placed at quaruple diftance; I fay, the ffect and Strength will be

$$
\text { E. } 3 \text { the }
$$

[54]
the fame with half the ftu And I alfo fay, that co Girder alone of 18 incl fquare, and 20 foot lon is near Equivalent to tt 17 Gifes of 9 inches decom and $4 \frac{1}{2}$ broad-aboveme tioned; which Girder IH but half the ftuft which t Gife had; as the Gife d contein but half the Itu which the $4^{\frac{1}{2}}$ inch-Plan firft mentioned did co tein. Which faving ftuff is the reafon of diw ding Plank into Girder

$$
[55]
$$

fife, and Board. Where ote, that thefe Proportins and Scantlings are not ffered as exact and beft or practice, but onely to sintimate the method of inuiring into thele matters oufful in the world.

Cbe Cbird 3 nifante

In the Oars of a Boat, $\mathrm{So}_{\mathrm{c}} \mathrm{c}$.
O determine or make a good eftimate of the power of Oars, 1 firf, for D 4 eafier

$$
[56]
$$

eafier calculation, fuppo a Paralellipipedon-Bo or Veffel, of breadth fit fi a pair of Skulls, viz. of: bout 5 foot broad, and ' length fufticient for 9 fuc: Skulls or Oars, viz. abou 30 foot long, and one foa deep, and to draw bu three inches water. Next I fuppofe, that every Skull ler with his Skulls anc Bench, \&c. their weight te be equivalent to three Cu . bical foot of water; fo a: every pair of Skulls (withiu

[57]

its appurtenances) deprefes or finks the Veffel $\frac{x}{50}$ of a oort, or about $\frac{1}{4}$ of an inch. Now, fuppofe alfo a foots calm standing water, in which one Rower will row his Veffel 12000 foot, or bove two miles in an hour r 3600 feconds; I fay then, hat, if one Remex or Skuller hove 12 quarters or 3 inch. s draught, 12000 feet forard in 3600 feconds; then like Rowers that move he fame Veffel, drawing 5 quarters, or $3 \frac{3}{4}$ inches D 5 of

$$
[58]
$$

of water, the fame 12000 feet, in 1800 feconds plit 3 to feconds, or in all, 216 feconds: And that 9 that row the fame Veffel, as tll Root of 21 to the Root 108 , which is, as near 3 to or in $\frac{3}{7}$ of the time that or Rower alone could ha done the fame. Agaii fuppofe each Oar leng the ed from two to three, an that as many ftroaks a made in the fame time before; then the Veloci fhall increafe proportion bly.

[59]

But fuppofe, that the Jars remain of the fame ength, but that the Blade de doubled ; then the Velacity foal increate but according to the Roots of that doubling, or as $\mathbf{1 0}$ to 7 , or 7 to 5 , \&c. fuppofing till the fame number of Troaks, within the fame time, in every Cafe or Experiment.

Again, fuppofe the fe Experiments be made not in fill water, but in water which runs 6000 foot an hour;

[60]

hour; then, againft th ftream the Velocity will L leffened by one half, an accelerated anfwerabl with it.

Laftly, if the faid wate: be fo rough, as that thi Veffel heavs and fets, fup pofe 20 degrees of the Qual drant in it ; then, foraf. much as the Boats way will be encreafed as much as the Tangent of 20 degrees exceeds the Rrdius, the way or Velocity of the Boat muft abate proportionably.

亚 x

$$
[61]
$$

Che Fouth Juftante

In the Motion of Horfes.
SUppole an Horfe can travel 5 miles an hour with 200 pound burthen on his back ; then with half the faid burthen he Thall travel 7 ; and with double but three miles and a half. Again, fuppofe a Horfe with 200 pound burthen can endure to trawel 10 hours per diem; then with

[62]

with half the fame burthe: he may endure 14 houres and with double but hours. Laftly, fuppofe Horfe (as Race-horfes) ca: run after the rate of fou miles in $\frac{1}{8}$ of an hour, 0 32 miles per hour, ther they can run about 6 mile: $\frac{8}{28}$ in $\frac{1}{4}$, or after the rate 0 $24 \frac{1}{7}$ miles per hour; anc in one half an hour can run 8 miles, or after the rate o 16 miles per hour ; anc in a whole hour can rur $2{ }^{\frac{3}{1}} \frac{1}{4}$ miles; and in 2 hours

[63]

an run 16 miles, or 8 niles per hour ; and in 4 hours can run 24 miles, at 5 miles per hour ; and in 8 hours 32 , or 4 milesper hour; and in 16 hours may go 4^{8} miles, or 3 miles in an hour. All which agrees well enough with Experience.

$$
[64]
$$

Che fifth Inftance,

In Mills.
$W^{\text {Here the wind blows }}$ fuppofe, on a Saw mill, in double Velocity there the Saw-mill, whicl carried but one Saw Thall carry four; If treble Thall carry nine. And the like is true of water gufh. ing out upon the floats ol Under-fhot Mills; as may be feen in the Stampers of Paper-Mills, the Stocks of Fulling

$$
[65]
$$

fulling-Mills; and other Vorks of the like nature.

Cbe sirth 3nftante,
In Gunpowder.
THe way of a Bullet, thot out of a good frun, is as the fquare Roots f the quantity of the Gunowder fired; I fay, of onder fired, becaufe what oes out unburnt, goes raier as Shot than Powder; nd the Length of Guns figifies only the conftraining of

$$
[66]
$$

of the Powder within th Lines of Direction, till be all fired: The ufe a hard ramming and fcrew ing of Guns, being alfo th fame; and the excellenc: of Powder being to fir quick, and before it goe out of the Gun. I fay there fore, the Velocities caufe by Gun-powder are as th Roots of the Powder firec that is to fay, 4 pound c Powder, all equally fire within the Piece, thall cat ry a Bullet twice as far a on:

$$
[67]
$$

11 one pound fhall do; and n Time, as 10 to 7 ; which aft mentioned numbers re the Roots of the double fiftances afore-mentioned. Now, if the Capacity of the Concave of Guns ought to pe, as the Weight of their Bullets or Powder ; then, if he juft length of any one Jun hath been well found py good Experimentation, hen may alfo be known the length of every Gun for every Bullet refpectively. As; for example, fuppole

$$
[68]
$$

pofe a Gun, that carries Ball of 5 inches Diameten be 10 foot long in the Con cave, then the Content co the faid Concave will b 3000 Cylindrical inches Now the queftion is, hor long muft the Piece be which carries a Bullet c 7 inches Diameter? I fay that forafmuch as th Weight of the 5 inch Bull let, to that of 7 , is as 12 ! to 343 ; the Concave of thi greater Gun muft be in the fame proportion tul 3000

[69]

000 , viz. 8232 like inches, 0 as it may contein and re a proportionable quanity of powder : Which 232 being divided by the Irea of the Bullet, 49, the Luotient will be 168 inch5 , or I 4 foot ; that is (to seak fhortly and plainly) be Length of Guns muft be peafured by the Diameters *tbeir repective Bullets. I unnot fay, I have tried the fects of Gunpowder to be a the abovemention'd proortion, but have credibly heard

$$
[70]
$$

heard it to be fo; and bet caufe of the Similitude " Sails, Weights, Knocks,am the other points above der fcribed, unto this of Gum powder, I believe it; am recommend it to your fun ther thoughts and expen ence.

Cbe Geventi Tnftance. Of Sounds.

Et there be many Equ.
L. Sounds; I fay, that th Diftances, at which the ma!

$$
[71]
$$

way be heard, are the ark-oots of the Numbers of with Sounds. For, four Lufquets will be heard dixivice as far as one, and :ane thrice; and fo of the witeft. By which reckoning, ne hearing of fome of our leets Engagement with e Dutch even to S. Fames's arknear this City is ealy folved; and the truth that Obfervation doth deciprocally countenance is Doctrine. For fuppofe both Fleets (confilting

$$
[72]
$$

ing of two hundred Shi great and fmall) had bout 12000 pieces of Om nance on board them which at a Medium fuppo to be Demi-Culverim Suppofe alfo, that a Dem culverin, with the fame c : cumftances of Wind an Air, may be as eafily hea five miles, as the faid E . gagements were heard ital miles. Then I fay, th 1024 of the faid 120 Guns firing together, very near the fame time mig

$$
[73]
$$

might (as they were) be pvell heard 160 miles; and Hat about 4000 fuch Guns hight as well be heard 300 hiles, as one Demi-Culerin five miles; which laft oint I add, to prevent the nbelief of a probable mater, when it thall happen. Tow what effect this had in he Popes Prefage of the fattel of Lepanto, I know jot.

> E Ehe

[74]

Cuf cighth 3 nftance Of Smells

Tay the fame of Smell: viz. that the Diftance at which they are perceiver are the Roots of the Quam tity of the Matter out co which they are emitted! which Doctrin I apply t folve what I once did hard ly believe, viz. that Ship coming from America tc wards Portugal, did fme. the Rofemary and otho odor

[75]

doriferous herbs 60 miles If from the Land: The hich feems not only creible, but very likely. For, a foot fquare of a Rofe-nary-Field may be fmelt ne Perch or Rod (whereof 20 make a mile,) then aout 8000 Acres of Land, hereon fuch fented Plants
0 grow (or a piece of and about 4 miles long, ad 3 miles broad; or 6 iles long, and 2 miles oad) may be fmelt 64 Eles : And 72000 Acres

$$
E_{2} \text { of }
$$

$$
[76]
$$

of the like Land, or a pan cel of fuch Land about it miles fquare, may be fme: as many leagues, or nea 200 miles. And this Con fideration I pitch upon, a one of the grounds whera upon I would build a Deat drin concerning the Influ ence of the Stars, and othe Celeftial or remote Bodi upon the Globe of tll Earth, and its Inhabitant both Men and Brutes.

$$
[771]
$$

Che Jintl $\mathfrak{z n f l a n c e : ~}$

Concerns Vijible Objects.

- Say alfo, that four equal - and like Candles will ive light but twice as far 3 one, and 9 , thrice as far; nd that 16 will alfo enghten but 4 times as far as he, \&cc. And it a Flag or hips-Vane of a yard fquare ay be feen a league off Sea, it muft be 2 yards uare, or 4 fquare yards

$$
\text { E } 3
$$

$$
\left[7^{8}\right]
$$

to be feen 2 leagues, ani fo forward. But whoevee will make experiment here of, mult firft confider, hoi many miles in thicknels co a Middling, Clear, and D aphanous Air do make a. Opaque. For we find, tha although a very thin plat of clear Glafs feems to hin der our fight of near Ob jects but very little; yt we alfo know, that grea number of them (fuppol one hundred) can fcare be feen through at all Here
[79]

Hereunto alfo mult be adled the Confideration of he Convexity of the Earth; and then I doubt not, but his Doctrin (of Roots and *iliquares) rectified and cor. tected with the two addiional Confiderations laft nentioned, will hold conerning Vifible and Lucid 3odies, as was above proounded.

$$
\text { E. } 4 \text { Ity }
$$

$$
[80]
$$

Cbe centh suftance,

In the Time of the Vibratio: of Pendules.

THe times in which th - Returns of a Vibrai ting Pendulum are made are the Roots of the Dii ftances between the Cen ter of the Pendulum, ant the Center upon which i moves. I fhall need ti make no application of thi Truth, fince we all enjo:

$$
[81]
$$

he benefit of it in our more egulated Clocks and Meaures of Time, which are now in common ufe, and rom whofe Improvements we may moft hopefully exject a better meafure of Congitude upon the Surace of the Earth. The furher ules which may be made hereof, (it being a very fimple and examinahle Experiment) is to withefs and give evidence to other the more abitrufe and complicate Pofitions, which. E5 are

[82]

are of the like and parallell Nature.

Che $\mathbb{E l c o n t h}$ 3nfance

In the Life of Man, and itss Duration.

TT is found by ExperiI ence, that there are more perfons living of between 16 and 26 years old, than of any other Age or Decade of years in the whole life of Man (which David and Experience fay to

$$
[83]
$$

to be between 70 and 80 years:) The reafons whereof are not abitrufe, viz. becaufe thofe of I 6 have paffed the danger of Teeth, Convulfions, Worms, Rickets, Meafles, and Smallpox for the moft part: And for that thofe of 26 . are farce come to the Gout, Stone, Dropfie, Pal fres, Lethargies, Apoplexies, and other Infirmities of Old Age. Now whether thefe be fufficient reafons, is not the prefent Enquiry; but

[84]

but taking the afore-mentioned Affertion to be true; I fay, that the Roots of eve ry number of Mens Agess under 16 (whofe Root iss 4) compared with the faid! number 4 , doth fhew the proportion of the likely-hood of fuch mens reaching 70 years of Age. As for example; 'Tis 4 times more likely, that one of 16 years old fhould live to 70 , then a new-born Babe. 'Tis: three times more likely, that one of 9 years old fhould

$$
[85]
$$

culd attain the raid age. f70, than the faid Infant. loreover,'tis twice as like, that one of 16 fhould each that Age, as that one $f 4$ years old fhould do it; nd one third more likely, an for one of nine. On the ther hand, 'tis 5 to 4, that ne of 26 year's old will die efore one of 16 ; and 6 5 , that one of 36 will die efore one of 26 ; and 3 2 2, that the fame perfon f 36 thall die before him f16: And fo forward according

[86]

cording to the Roots of : ny other year of the decl ning Age compared with number between 4 and 5 which is the Root of 2 the moft hopeful year fic Longævity, as the mea between 16 and 26 ; and the year of perfection, a cording to the fenfe of O_{l} Law, and the Age for who life a Leafe is moft valu: ble. Toproveall which, can produce the accomp of every Man, Woman, an Child, within a certain Pi:

$$
[87]
$$

Th of above 330 Souls; which particular Ages ing caft up, and added gether, and the Sum divied by the whole number of buls, made the Quotient etween 15 and 16 ; which call (ifit be Conftant or niform) the Age of that arilh, or numerous Index Longævity there. Many which Indexes for feve1 times and places, would ake an ufeful Scale of Sabrity for thofe places;and better Judg of Ayres than the
[88]
the conjeCuural Notions w commonly read and talk co And fuch a Scale the Kim might as eafily make for a his Lominions, as I di this for this one Parifh.

(Tye Cwelfth $\mathfrak{T H f t a n c e}$

 In Mufick.TAke a Mufical Strin? one end thereof be ing faftned ; hang unto tl other (over a convenier Bridg) any weight whic may ftrain it to fome grav Mufical Tone or Note; the

[89]

fome other ftring of near e fame length, Unifone ereunto. Laftly, inftead the firft weight, hang to e firft String the Quadple of the fame weight; id it will appear, that the ring with the quadruple eight fhall yield a Tone Fan 8 th or Diapafon above felf, when fingly charged. he realon is, becaufe the madruple weight doubles. e number of Vibiations,
2 being the Root of 4 :) nd for that the Ratio Formal is

$$
[90]
$$

malis of Tones lieth in $t t$ number of the Vibratiom and of the Diapafons, the doublnefs of fuch nu bers. By the fame Methul of hanging-on fever weights at one end of t fame String, all Tones m: be produced, of which fund String is capable. Tones or Notes alfo oflil Bells and Drums do follol the fame proportions their Tenfion and Mettan fo as able Artifts can ca: Bells in Tones affigned.

$$
[91]
$$

che Cbirtenth suffant,

Of Fire and Spirits.
Et a Cylindrical Flatbottom Veffel be filled ith Water, and let it be ied, in what time one amp or Candle would nake the water boyl nrough, or come up to is greatelt heat: Then fee, I how much leffer time, 2 , , or 4 more like fires will aften the fame effect. I

$$
[92]
$$

cannot ípeak pofitive: hereof, but know from veral Obfervations, thi the Acceleration abovefail Ihall not be made in Aritll metical Proportion; for afmuch as I know, that it Fire-works great Fires ant more profitable than fmall as in Brewers Coppers, an Iron-works may be feen wherein double Fires pro duce more than double dis patch or advantage. I fhal therefore fufpend this mat ter, and pafs to the meafu

[93]

ug of the Spirituofity of iquors, or in what proortions feveral Liquors pntein more or lefs of inmeable or ardent parts. ow in this cafe I conceive, e Confideration of Roots ad Squares is alfo mateal ; for I underftand by arength or mulcitude of birits, the Space, greater leffer, into which fuch iquors will be rarified, will fill with Spirits: s for example, if a Pint Water rarified into Va pour

$$
[94]
$$

pour will fill a Globe bo of 3 foot Diameter ; andl Pint of rectified Spirit Wine will fill a Globe fix foot diameter, or 8 tim as large as that of Wate: I thall fay, that there is times as much Spirit or V pour in one as in the othe But if thele Liquors we: put into open Lamps Veffels, there the face which the Spirits rife, a the Roots, whofe Squar do thew the Spirituofity thofe Liquors: Ex. gr.
the

[95]

are be a Lamplike Veffel common Aquavita; in ich place a Week as high the fame will burn by erifing of the Spirit unit, fuppofe an inch ave the furface of the Li . or : Now, let there be a e Equal veffel with fuch pirit, as will rife up sher, fuppofe to a Week aced two inches above - Surface ; in this cafe, I Th, that the latter Liquor quadruple in ftrength or rent of Spirit to the former;

$$
[96]
$$

mer ; for 'tis certain, til as the Spirit rifeth doun upwards, fo alfo it emitt: or rarifieth it felf doun alfo fideways ; and com quently the quantity of Spirit or Vapour muft quadruple ; and fo of otl proportions.

$$
[97]
$$

Che fourtenth Juftance,

Df Rifing and Falling Bodies; but particularly of Waters in Pumps and River-ftreams.

- Et it be obferved in the - Tranfparent Pipe of a orcing Pump, at how may ftroaks the Water is fored from the Bottom to he Top; and let as many warks be made at the feve11 places unto which the F Water

$$
[98]
$$

Water mounted at ever ftroak (which ftroaks w fuppofe to be all in Equa Times;) it will appear, tha all the faid Divifions wil be according to the Prce portions or the Logarithm above-mentinned. As fo the Defcents and Accelera tions of falling Bodies, th Times are the Roots c thefe Spaces, which the fall in the faid times refpe Etively. The great effer whereof we fee in Overpot Mills, where a little wate fallins

[99]

falling upon a Wheel of a large Diameter, produceth wonderful Effects ; the which may be well compued upon the Principles we iold forth.

Waters alfo have greater orces in the above-mentioned proportions, as the ole or place whereat they flue is lower from their jurface; as may be feen in II Breaft- and Underfhotfills; where it is pleafant o divide the Sinking of he water into Equal SpaF 2

$$
[100]
$$

ees, and to count thw Clacks, Revolutions on Stroaks made within the Time of the waters finkin ξ every fuch equal Space for therein the abovemen tioned Logarithmes may alfo be obferved.

Unto this head may br referred the Leakage o Shaps. For let there be : hole in a Ship fomewhere under water ; then let it br feen, what water comes it at the faid hole, within any ipace of Time; then lei the

$$
\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]
$$

the like hole be made at donble the perpendicular diftance from the top of the water, and there thall come in four times as much as at the upper hole; and let a third be at three diftances, and that thall admit 9 times as much, \&c. Again, let there be two Equal holes or Leaks in a Ship, the one at Head, and the other at Stern, and let the Ship be in motion; then the Leakage at the Head is compored of the preffure of
F3 the

$$
\left[\mathrm{IO}_{2}\right]
$$

the water from the Surface: and of the Ships Motion rogether. Moreover, if tho Ship make double way, the Leakage will be quadruple: if treble way,noncuple, \&c: Wherefore to ftop Leaks a fore, the Ship muft fop its: motion, lye by, or bear up to go with the Wind and Sca, \&c.

Lattly, I fhall add, that the Swiftneffes of Waters or River-ftreams, are the Roots of the Power that caufes them; which caufes

$$
[103]
$$

caufes are Steepnefs or De. Icent in a fharper Angle from the Perpendicular. Wherefore knowing by obrervations, what degree of Steepnefs caufeth any degree of Swifnnefs; hereby; and by our Doatrin, the Height of ground where any River rifeth above its fail into the Sea, may be computed.
F-4 Tye

$$
[104]
$$

Cbe fiftenth $\mathfrak{n c t a n c e}$

In the Blaft of Bellows.
N Iron-work Furnace are the greatelt and mof regular moving Bellow that are any where ufed the which are commonly turned by the eveneft over. thot Wheels. Now thi Times wherein thefe Bel. lows rife and fall, are Rooțs of the Strength o fuch Bellows-blaft upon

$$
[105]
$$

the fire ; for rifing in double Quicknefs admits double air in the fame Time; which being in like manner fqueezed out again, double Quicknef3 makes double Expulfion, and confequently double Swifnefs; (the whole pafing through the fame Twire-pipe in half the time;) and double Swiftnefs makes quadruple efects upon the fire or Fur. race, as aforefaid.
F5

$$
[106]
$$

Clye Sixteritb $\mathfrak{T H A}$ ance,

In the Price of feveral Coma modities.

GUppofe a Maft for \checkmark fmall ship be of I inches Diameter, and as ii ufual, of 70 foot in heighth and be worth 40 s ; then : Maft of 20 inches through and double length alfo thall not onely colt eigh times as much, accordin\} to the Octuple quantity o Tim

$$
[107]
$$

Timber it conteins, bu thall coft 16 times as much or 32%. And by the fam Rule, a Maft of 40 inche through fhall coft 16 time 32% or 516%. Of whicl laft Cafe there have beer fome inftances. But where as it may be objected, That there are no Mafts o four times 70 , or 280 foo long, I ftill fay, that the Rule holds in common pra ctice and dealing. For, i a Maft of 10 inches thick and 60 foot long, be worth 303

30 s ; a Mait of 20 inches: throughout, and 8o foor iong, thall be worth $15 l$. And a Maft of 40 inches thorough, and 100 foot long (not 280 foot) thall! be worth near $100 l$. Moreover, fuppofe Diamonds or Pearls be equal and like in their Figures, Waters, Colours, and Even. nefs, and differ onely in cheir Weights and Magnitudes; I fay, the Weights are but the Roots of their Prices, as in the Cafe afore.

$$
[109]
$$

foregoing. So a Diamond of Decuple weight, is of Centuple value. The fame may be faid of Looking-glafs-Plates. I might add, that the Loaditone A, if it take up 10 times more than the LoadItone B, may be alfo of Centuple value. Laftly, A Tun of extreme large Timber may be worth two Tuns of ordinary dimenfions; which is the caufe of the dearnefs of great Shipping above fmall; for the Hull

$$
\left[\begin{array}{lll}
1 & 10
\end{array}\right.
$$

of a Veffel of 40 Tuns ma be worth but 3 l. per Tun whereas the Hull of a Ve: fel of 1000 Tuns may d worth near 15 l. per Tum From whence arifes a Rulk how by any Ships Burthe. to know her worth by th Tun, with the Number an Size of her Ordnance, doc.

$$
800
$$

$\left[\begin{array}{lll}11 \\ \hline\end{array}\right]$

Che Sibententl 3 mitance,

In Mill-Dams, Sea-Bancks, and Bulwarks of Fortref fes.

CUppore any Wall, Dam,
N or Banck, to be juft fufficient to keep out or refift the Sea, or other Stream againft the appulfe of its waters, being of a certain force; I fay, that to make this Wall or Damm Atrong enough againft a double

[112]

double fwiftenefs of ap pulfe, it mult be augmem ted by quadruple thic knefs; and if it mult b made fufficient againft th greateft violence which e: ver was obferved, then that violence being known, it. the Root of the number by which the Walls thicknef: muft be augmented.

So Cannon-Bullets de Execution or batter in duplicata ratione of their fwiftnefs; and therefore:

$$
\left[\begin{array}{lll}
1 & 1 & 3
\end{array}\right]
$$

nd thick in duplicatâ rawone of the faid fwifnefs, hich depends upon the Diftance of the Battery, nd the degrees of Tardatin , which Bullets make in very part of their way beween the Gun and the iampert, which they are o batter. Where note, hat Bullets commonly beat sut a Cone of Wall, whofe fertex is in the Bullets Enry, and like the Conical fouea to be feen in the Sand of an Hourglafs.

$$
[114]
$$

Cbe eighteenth 3 netance

In the Compreflion of Yielic ing and Elaftic Bodies. as Wooll, \&c.

SUppofe fome Cylindr cal or other parallell fided Veffel, fill'd wita Wool, or Down, or Fea thers, or other Elaftic Ma terials; let the fame b covered with a moveabl Head (fuch as in preffing of Pilchards they call : Buck.

$$
[115]
$$

uckler;) then firf obrve, how low the Bucker defcendeth by its own eight; and then upon his Head or Buckler lay triple weight, to make re whole quadruple, and will appear, that the uckler will fink bnt juft s much lower ; and being Joncuple, another like pace lower: So as the feeral Spaces of Depreffim ins are the Roots of the epreffing Powers. From ence may be feen, how the

[Ir^{6}]

the Force mult be increa ed at every Turn or Thre of a Screw-Prefs; whiu being done according the proportions here ut derftood, I doubt no but a Light Subitance wil a convenient Apparatu might be compreffed unt the Denfity and Weight ven of Gold. But, that Si ver might be fo condens' c I made no queftion, till beard of fome Anomaly i the practice, which I mut better confider of. Th furthes

[117]

arther Truth whereof doth ppear in :he Under-waterir within the Veffels of ater-Divers, who the lowthey go, do find their ock of Air more and ore to Chrink; and that cording to the Roots of e Quantities of the per-incumbent Water or eight. In like manner ke a Bow, and hang 1y weight to the middle its ftring, and obferve ow low it draweth the faid ring. Now, if you thall qua-

$$
[1: 8]
$$

quadruple the fame weigl it will draw down doult the firft diftance, and no cuple will draw it dow treble, ovc. So às in drawn Bow, let the Arre be divided into quotcunq. partes, each equal part the Tenfion carrieth tl Arrow to an Equal D Atance, notwithiftandin each equal part of the Ten fion was made by Unequa power, and that each equi Space or Part alfo of tht Arrows firft flight require Unequa

$$
[119]
$$

nequal Force, viz. leaft rength at firft, and moft laft; and that, in the oportion firit mention1. So in the Fuze of a atch, the greateft ftreng th the Spring is made to ork upon the thorreft V_{e} is; and the leatt upon the ngeft, fo as to equalize e whole. The like alfo ppens in the Traftion of Wecles upon two Bones ith a turning Joynt bereen them; which Bones d Mufcles make a Tri-
angle

$$
[120]
$$

angle, whereof the Mufic is the Bafe, fubtending t Angle-Joynt. Now intt working, the Mufcle frongeft, when the Vec: is fmalleft, as lying mo obliquely ; and vice verן when the Mufcle and m ving Bone come to make: right Angle.

$$
\begin{gathered}
{\left[\mathrm{I}_{21}\right]} \\
\text { An Appendix } \\
\text { OF }
\end{gathered}
$$

ELASTICITr.

T Aving done with the Confideration of dulicate and fubduplicate roportion in Elaftic Boies and Materials, I hope will not be amifs to fubpyn a thort Appendix of Tafticity it felf, whereby b draw forth the better G thoughts

$$
[122]
$$

thoughts of other men f Countenance or Corredt on. Wherefore I fay. followeth; viz.

Firft, Suppofing eue: Body to have a Figure " Pofiture of its own, out which it may be difturbe by External Force; I fa! that Ebafticity is the powi of recovering that Figur, upon removal of fuc Force.
2. I think it eafieft t confider Elaftic, Springinध or Refilient Bodies, as La

$$
[123]
$$

sine, Latbs, or Lines; fo s a ftreight Lath, being y force bent circularly, oth upon the removal of hat Force, return to be reight again by its Elafiity; and a Circular Hoop cing forced ftreight, leaps ack into its own crookedtefs by its Elafticity.
3. Elaftic Bodies in heir returns do overfhoot eir own Natural Pofiture, id vibrate cis citrà the oint they feek, as doth a endulum, or MagneticG_{2} Needle,

$$
[124]
$$

Needle, till at length thu relt; the one in his P_{t} pendicular, and the oth in his Meridian.
4. An Elaftic Body iss grofs Tangible Body, whic is made of Corpufcles, the fmalleft Bodies that ci poffibly be feen; and the Corpufcles are made of toms, or the fmalleft bod: in Nature (fuch as where a Million doth not perhaj make one of the Corpufcl laft mentioned.)

$$
[125]
$$

5. I know no reafon, why we may not, upon occafion, fuppofe Atoms to be of Several Figures and Magnitudes, provided we uppofe them immutable, Cuch as Corpuscles are not; profs tangible Bodies being very mutable by the various Additions and Deritions that befal them. 6. I fuppofe in every Atome three fuck points as we all lee and know to be in the Globe of the Earth, and in every Magnet, viz. two G_{3} Poles

$$
[126]
$$

Poles in its Superficies, ar a Central point within ii fubftance, which I call in Byas. The Heavens all vifibly have their Poless and mut have a Center, Gravity or Magnitude, C Come other Central and prs dominant Point.
7. I fuppofe every A tome may move about him own Axis, and about the Atoms alfo, as the Moon does about the Earth; We. nus and Mercury about the Sun; and the Satellites Forts

[127]

Fovis about Fupiter, \&c. 8. I fuppole, that the Byas of one Atome may have a tendency towards the Byas of another near it, and that the Byaffes of many Aroms may tend to fome common point without them; as we fee in Electrical Bodies, and in the Globular drops of Water and Quickfilver, and all Mucilaginous Subftances.
9. I fuppofe, that all A. toms have, like a Magnet, G 4 two

$$
[128]
$$

two Motions, one of Gravit, whereby it tendeth to wards the Center of thy Earth, and the other o Vericicity, by which it tendl eth towards the Earths Poles, and whereby Mag. nets joyn to each other by their Oppofite Poles.
ro. All Atoms by their Motion of Verticity or P_{0} larity, would draw themfelves, like Magnets, into a ftreight Line, by fetting all their Axes in directum to each other; did not the Moti-

[129]

Motion of their refpective Byaffes towards each other, end towards other Points, curb them into a Triangle, whereof the Two Axes of Tro Atoms are two fides, Hand the diftance between he Byafs of each making he third fide : Wherefore call the Polar Motion a-ove-mentioned, the Moion of Rectitude; and the Motion of the $\mathfrak{B i}+\int$ es, the Motion of Angularity or Survity, or the Angular or Curve Motion.

$$
1 \mathrm{I} . \mathrm{I}
$$

$$
[130]
$$

ri. I fuppofe, that a thefe Motions may be " different Velocities, and thi: by Contra-colluctations thee ballance each ocher, fome time into feeming relt : fay, feeming, becaufe pel haps there is no reft in $\mathrm{Na}_{\text {a }}$ ture.

Laftly, I might fuppof (even without a Metaphor that Atoms are alfo Mal and E emate, and the AEtiv and Suceptive Principle: of all things; and that the above-named Byaffes are thee

$$
[131]
$$

the Points of Coition: For, What Male and Female exrend further than to Animals, is plain enough; the fall of Acorns into the ground, being the Coition of Oaks with the Earth. Nor is it abfurd to think, that the words in Genefis, [Male and Female created be them] may begin to take effect, even in the Imalleft parts of the firft Matter. For although the words were fpoken onely of Man; yet we fee they certain-

$$
[132]
$$

certainly refer to other A nimals, and to Vegetable in manner aforefaid, ant confequently not impros bably to all other Principle of Generation.

Conclufion.

To Conclude, I hope I may fay, that thefe my Principles, are Principles in deed; for there can be nc feper nor eafier than Matten and Motion. My Matter is fo fimple, as I take notice

$$
[133]
$$

of nothing in each Atome, but of tbree fuch Points as are in the Heavens, the Earth, in Magnets, and in many other Bodies. Nor do I fuppofe any Motions, but what we lee in the greater parts of the Univerfe, and in the parts of the Earth and Sea. Again, all the Motions I fancy in my Atoms, may be reprefented in grofs Tangible Bodies, and conrequently may be made intelligible and examinable. More-

[134]

Moreover, I hope none 0 my Suppoficions are incom fiftent with each other, noo do neceffarily infer an! abfurdity or falfehood. And laftly, I hope they folve all the Pb\&nomena o Elaftigity, and, as I think: of HardneSs, Fixedne S, Tenacity, Fluidity, Heat, Moiu. fure, Fermentation, and the reft. All which is hum bly fubmitted to the Cenfure of this Society; whofe Atoms or infeparable Members I wifh may happily Con.

[135]

aranglomerate, and Unite hemfelves into the moft ixed and moft noble Bolies amongft the Sons of Men.

FINIS.

Cy

